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In the idealized model of 

solar wind interaction (Beard, 

to be excluded from the plasma 

called the magnetosphere. The 

.' 

tne geomagnetic field - 
1960) we assume the field 

and contained in a cavity 

boundary of the cavity, or 
,- 

magnetopause, is unknown, but we stipulate the dynamic 

condition that the magnetic pressure just inside the 

magnetopause is exactly balanced by the kinetic pressure 

of solar wind particles elastically reflected from the 

surface (thermal effects are neglected). Fig. 1 is a 

schematic drawing of the magnetopause, with the dipole 

located at the origin of coordinates, and perpendicular ' 

to the plasma stream-direction. 
f 

Mathematically, this situation is described by the 

field 
2 H = - grad fl , V 0 = 0 ,  

inside the magnetosphere, and the boundary conditions 

- H-grad F = 0 , (con€.inement) 

- H O B  = B'COS'X , (pressure) 

which hold on the surface, F(x',y',z') = 0, where x is 
the angle of incidence of the incoming plasma (Fig. l), 

and B 2  = 8~r(2nmV ). 

velocity, ion number density, and ion mass, respectively. 

A singular point on this unknown surface is N, the 

2 V, n, and m are the plasma drift- 

neutral point, where the magnetic field lines "split," 
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the field vanishes, X = n/2, and the gradient is in the 

x'-direction. Although the problem is unsolved as yet, 

there are some good approximations to the general shape 

(Mead and Beard, 1963; Spreiter and Briggs, 1962; Midgeley 

and Davis, 1963). However, these approximations generally 

fail in the region of the neutral point, a region of interest 

since, if it does exist, it is likely to be unstable, 

and a possible'point of entry for high-energy particles 

into the magnetosphere. 

The neutral point considered here is an X-type neutral 

point (Dungey, 1958, pp. 39-41,51-52,98-102); however, it 

lies on a bounding surface, which must run parallel to 
one of the limiting field lines (Fig. 2). We must assume 

that surface currents can be made to account for the 

disappearance of the field outside the surface (magneto- 

pause). 

Series Representation. 

We can represent the field y = Ph by means of its 

We first transform to the (x,y,z) scalar potential Q .  

coordinate system with origin at N such that 

R(dx,dy,dz) = (dx',dy',dz') ; ( 3 )  

in a region small compared to the apex radius, R, we have 

x2 + y2 + z2 << 1. 

f o m  

The scalar potential is expanded in the 
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-a/@ = ax2 + by2 + cz2 + dx t + ey3 + fz 3 

2 2 2 + mxy2 + nxz + rzx + szy . (4) 

We must include cubic terms in the potential, since 

we expect the limiting field lines to be-curvilinear in 

the xz-plane. There are no linear terms, because the 

field must vanish at N; terms in y to the first power are 

3 = 0 in the xz-plane. deleted, because symmetry requires 

The dependence on xz has also been omitted, since for 

y = 0 = z there should only be an x-component of H on 

the x-axis (Fig. 2). 

! 

The gradient of Eq. (4) yields the normalized field: 

2 h, = 2ax + 3dx + my2 + nz2 + 2rxz; 

2 = 2by + 3ey + 2mxy + 2szy; hY 

2 h = 2cz + 3fz + 2nxz + rx2 + sy2; ' 

Z 

and the requirement 1 - g  = 0 yields 

I 

a + b + c = O ;  3 d + m , + n = O ;  

3 f + r + s = O ;  e = O .  ( 6 )  
- .  

Furthermore, as indicated in Fig. 2, we expect a < 0, c > 0. a 

Noon Meridian Contour. 

In the xz-plane the boundary conditions, Eq. (2), 

on the noon meridian contour become (dx/dz = x ' ) :  
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hx 2 + h, 2 = xt2/(1+xt2). 

If we substitute for x' in Eqs. (7 ) ,  ( 8 ) 7  then 

( 9 )  
2 2  4 + hx(2h, - 1) + h, = 0 , 

and since both components mst vanish at N 
\ 

From Fig. 2 we see that h, is opposed in sign to the 
coordinate z on the noon meridian contour. Thus, sufficiently 

close to N, 

If we substitute into Eq. (7) and differentiate, 

which leaves two alternatives: either x" is.discontinuous 

at N, or else x" = 0 at N. The latter implies c = 0 ,  which 

is inconsistent withtthe geometry of the limiting field line 

in the xz-plane. 

be represented as two separate power series,for z > 0. 

Since Eq. (11) must be satisfied on the noon meridian 

contour, it gives an implicit representation of that contour 

near N. 

Thus the curve, {x = x(z), y = 01, must 
< 

This must agree with x = fdz hx/hz of Eq. (7) and 



L -5- 

with Fig. 2. The leading term of Eq. (11) is 

(13) 2 2  
1 2ax +. nz2 = ;f 4c z . 

If n = 0, Eq. (13) implies that a is of positive sign, 

which contradicts Fig. 2. Therefore, we must assume that 

n has two different values, according to the sign of z. 

This is permissible as long as h remains continuous at 
z = 0, and E*& = 0 everywhere. 

with the leading term of Eq. (7) we find 

If we compare I Eq. (13) 

2 x' = - + hzs 0, x = ;f cz 

near N. Thus, Eq. (13) becomes 

n = 2 2c(2c-a) for z o 

Surface Representation. 

Since the gradient is in the x-direction at N, we 

can represent the surface by two second-order expansions 

in (y , z ) :  

F(x,y,z) = x - A h 2  - +y2 - c f y z  = 0 (16) 

< for z , 0. 
L * + = -  A- = c. 

By symmetry, B+ = B- = B; Eq. (14) requires 

If we form the dot product, Y-EF = 0, and 

substitute for x from Eq. (16), we find the confinement 
condition satisfied to second order in z 2 2  , y , and yz when 

m = 2B(2b - a) ; (17) 

. 
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&1 - b/a - c/a) = 0 . (18) 

The divergence conditions, Eqo. ( 6 ) ,  require that d a l s o  

be discontinuous, since 3d+m+n = 0, although m is continuous. 

Therefore, from Eqs. (17), (15), 

3d = f 2c(a - 2c) + 2B(a - 2b) , z 0 . ( 1 9 )  

Eq. (18) is incompatible with a+b+c = 0, unless Ck = 0. 

Although Eq. (19) forces & to be discontihuous at z = 0 

(a # Zc), the 3dx -term is negligibly small compared to 
the ax-term in Eq. (5). 

, 
2 

Third-order terms ing-: F = 0 are eliminated by 

simply setting f = 0 = s. Then, by the divergence condi- 

tion, r = 0, also. Thus, in the power series representa- 

tion the confinement condition of Eq. (2) is satisfied 

up to fourth-order errors, on the postulated surface of 

Eq. (16). If we substitute the expansions for and 

F ( x , y , z )  into the pressure condition of Eq. (2) we find: 

2 2 2 2 2 hx + h + hZ = cos x (dF/dz) (1 6 2nd-order terms), 
Y 

(20) 

and expanding h yields 

2 2  2 2  4c z + 4b y + 4th-order terms 

2 2  = 4c z (1 - 2nd-order' terms) 
By setting b = 0 we can reduce the error in the second 



boundary condition to fourth order. 

for the field in the neighborhood of N is given by: 
Our final expansion 

and the surface of the magnetosphere near N is given by 
I 

F(%,y,z) = x - (+)cz2 - W2/2c , 
for z o . 

! 

Bultide Reflections at N. 
I 

j Midgeley and Davis (1963) have observed that the 
1 

I J i effect of multiple reflections of particles near N might 
I I 

seriously alter the pressure condition (Eq. (2)) near the 

neutral point. In the second-order approximation one can 

show that the shape of the surface is consistent with the 

pressure condition to within 4%. 

most pronounced in the xz-plane; we shall calculate the 

added pressure, 6p, at a point (x,z) on the noon meridian ' 

contour due to multiple reflections. 

I 
I This effect would be 

~ 

' 

I 1 

Figure 3 represents a particle incident on the point I 
z ) on the contour x = cz2, zS0, y = 0, with an angle (xo, 0 - .  

of incidence G. This particle, on first reflection, strikes - - 
the magnetopause again at (x,z) where 

\ (x-xo)/(z-zo) = c(z + zo)  = tan 2% , 

. and 
_ -  

(25) ' 

. 
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- .  

therefore, 

z =  

as indicated 

is n - 2% + 
component of 

If we pursue 

we find 

c(z + 

However, the 

negligible. 

( 2 6 )  

in Fig. 3. We note that the angle of incidence 

x at (x,z), and the change in the normal 

momentum will be correspondingly smaller. 

the particle to the third point of reflection 
\ 

1 

3z0) = tan 2(x-x0) ; z .i 5z0 . (27 1 

effect of the particle, by this time, is 

We now consider the additional pressure, 6p, at (x,z) 

due to particles reflected from (xo,zo), and compare it 

with the pressure p = 2nmv cos x of the incident plasma 2 2  

stream (ignoring the y-coordinate). 

are incident on an area of ds, = (dxt + dz,) 
they are reflected onto an area ds = (dx2 + dz2)# at 

(x,z) ,  where their momentum changes by'2mV cos(rr - 2% + X) 

If nVdxo particles/sec 
2 %  at (xo,z0) 

, 

per particle. Therefore, since dx 

2 6p = - 2 m V  COS(~-~X~)' 

= 9 dx, 

(Wds)/9 . (28 

If we substitute for x, xo, from Eq. (25) and note that 
dx/ds = cos x, then we find: 

6p/p = 1/27 << 1 (29 ) 

- , 

. 
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D 

We may conclude that the effect of multiple reflections 

near the neutral point is negligible, and that the pressure 

condition is &lid over the entire magnetosphere, in this 

idealized representation. 
c 
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